智慧警务重点人员管控大数据可视化平台开发-青年创业网

小编:地摊货源批发网发布日期:2021-11-30浏览量:479
核心提示:智慧警务重点人员管控大数据可视化平台开发,警务分析研判的关键是挖掘人员、组织、案(事)件、阵地以及物品五要素之间的关联关系,如果能够借助物联网技术获取五要素信息,那么将大大提升警方获取线索信息的效率,同时也能避免人为错误。而面对庞杂的线索信息

警务分析研判的关键是挖掘人员、组织、案(事)件、阵地以及物品五要素之间的关联关系,如果能够借助物联网技术获取五要素信息,那么将大大提升警方获取线索信息的效率,同时也能避免人为错误。而面对庞杂的线索信息,则可以借助大数据分析技术实现深入,高效的挖掘分析,进而快速找出五要素之间的关联关系。

基于物联网技术的警务大数据分析模型是一种利用大数据分析算法对海量警务物联网线索信息进行深度挖掘分析的系统模型。它包括了物联感知层、数据传输层、数据分析层以及数据展示层,同时,它还要与现有的公安信息网有效融合,实现信息共享碰撞。

物联感知层

警务物联网,是指利用感知技术与智能装置对警务工作关注对象进行自动感知识别,通过网络,技术处理和智能分析,实现对关注对象状态和态势信息的实时掌握,达到对关注对象动态监测、精确管理和科学指挥的目的。目前警方所应用的场景有旅客身份证查验、警车警员GPS定位、城区视频监控、道路卡口车辆监控、重点部位报警防范、重点人员手机定位等,可以采集到人员、车辆以及物品的城市时空数据,为警方建立基本要素排查提供大量真实可靠的原始数据。

数据传输层

经过移动互联网、有线网络等媒介传输到系统模型的物联网数据,具有数据量大,且分布在不同时域,空域的特点,是无法直接使用的,为此需要按照一定的标准规则对它们进行初步的筛选和归类整合,将其转化为兼容系统模型的,具有统一规范标准的“元数据”。

数据分析层

经过初步归类整合的数据依旧是海量且缺乏直观联系关系,无法为警方提供研判依据,为此需要借助专业的数据挖掘算法对这些数据进一步分析、整合。同时还要与公安信息网中的线索与情报进行碰撞,以降低单一数据源造成的信息可靠性低等问题。常用的分析算法有分类分析、回归分析、聚类分析以及关联分析。

数据展示层

伴随着大数据应用而出现的技术还有可视化展示技术,它能够很直观的将大数据分析产生的晦涩难懂的数据以图表的形式展示出来,帮助警方根据图表特征快速研判。本模型针对警务案件研判特点,选取了几种常见的图表模型做展示。


文章链接:https://zq.61ziyuan.cn/news/show-16917.html
文章来源:广州童装批发市场    
 
标签: 1688货源网
 
更多>同类资讯